
AD-AIOl 871 VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG D--ETC FIG 12/1
AN EFFECTIVE ARMA MODELING METHOOD.U)
APR 81 J A CADZOW N0001I-80-C-0303

JNCLASSIF IED 1t NL

* EEEEEEE,



AN EPTCTIVT AlM )MDDMING NETHOD S ECTE-

James A. Cadzow

SDepartment of Electrical and Computer Engineering i 8
Arizona State University
Tape, Arizona 85281

ABSTRACT In the classical estimation problem, it is

desired to achieve an estimation of the spectral
The ability to model random time series plays density function (2) from observations of a time

a prominent role in a variety of applications as series. Without loss of generality, these obser-
exemplified by seismic data analysis, doppler vations will be here taken to be the N contiguous
radar processing, speech processing, adaptive elements
filtering, and, array processing. Undoubtedly,
two of the more popular procedures for effecting x(l), x(2) ..... x(N) (3)
such time series models are the classical Fourier
(MA) approach and the maximum entropy (AR) method. A variety of procedures have been proposed for
In this paper, a theoretical comparison of these using these observations to achieve a spectral
contemporary procedures with a more general ARMA density estimate. Without doubt, the overwhelming
method will be made. It will be demonstrated that number of procedures ultimately result in a
the spectral estimation performance of the ARM rational spectral density model which fits the form
method typically exceeds that of its more special- ].
ized MA and AR counterparts. With this supremacy I b +b1e-'+'"+b e-Jqw2
thus established, a recently developed method for S (ejw)
ffectively generating ARMA model estimates from l+a e- + ...+a e-j

time series observations will be then presented.
\ 2

I. INTRODUCTION 4())

problem which arises in a variety of appli- A p(ew ()

cations is that of estimating the statistical
characteristics of a random wide-sense stationary The ak and bk coefficients of this model are
time series ix(n)}. This estimation is typically referred to as its autoregressive and moving
based upon a finite set of time series observations, average coefficients, respectively. This model is
In many signal processing applications, only the comonly referred to as an autoregressive-moving
second order statistics as represented by the time average (ARMA) spectral model of order (p,q) where
series' autocorrelation sequence q and p denote the orders of the numerator and

denominator polynomials, respectively. It is
rx(n) - Etx(n-rm)x*(m)l (1) readily shown that any continuous (in w) spectral

density may be approximated arbitrarily closely by
is required. In this expression, the symbols E the above rational model if the order (p,q) is
and * denote the operations of expectation and coa- selected suitably large. Thus, the robustness of
plex conjugation, respectively. Upon taking the this rational model is apparent.
Fourier transform of this deterministic auto-
correlation sequence, we obtain the associated In studies directed towards spectral analysis,
power spectral density function the preponderance of effort has been directed to-

wards two special cases of the general ARMA model

S (jw) (4). They are the moving average (MA) model for
Sx = 7 r(n)e-n (2) which Ap(e Jw) 3 1, and, the autoregressive (AR) r

n--  model for which Bq(eJw). - bO . The spectral density
arising from a KA model is seen to contain no poles,

It often happens that the essential attributes of and, as such it is known as an all-zero model.
a time series are more discernible from its fre- Similarly, the AR model is referred to as an all-
quency domain spectral density function than from pole model, and, the general ARMA model is seen to
its equivalent time domain autocorrelation sequence. be a pole-zero model. Undoubtedly, the primary
It is with this in mind that interest in spectral reasons for interest in the special case MA and AR
estimation techniques has evolved. models are that they:
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in which w(n) is a symmetric window function which(iii) are synthesizable by efficient algorithms. is selected to effect some desired behavior. In
Despite these factors, it is widely recognized that the pure truncated case, the rectangular window isDethe e obu t ode itpicaiely rcogid hat used in which came w(n) - 1 for 1qkln. Since thethe more robust AMH modl typcaly provdes a autocorrelation sequence in a complex onjugate
much superior spectral estimation performance and
uses fewer model parameters in the estimate. The syimetric function of a (i.e., rx(-n) - rx*(n)),
main impediment to its use on a wider scale has been one can readly show hat expression (6) can be
the lack of a specific procedure for obtaining the equivalently represented in the form specified by
ARKA model parameters in a computationally effici- expression (5) whereby the prevailing coefficients
ent manner. Recently, an ARMA spectral modeling are releted by
method which possesses this computational capabili- q
ty has been developed [ 1]- (4). The main w(n)rx(n) - bb for Oinsq (7)
features of this new procedure are outlined in k-n

Sections IV and V7. Given the q+l values of the product w(n)rx(n), one
In the next three sections, theoretical pro- may readily solve thin nonlinear system of q + 1

cedures for generating MA, AR, and ARMA models from equations to obtain the MA spectral models bk co-
a finite set of actual autocorrelation values are efficients as used in expression (5). Expressions
presented. This is then followed by an example (6) and (7) then constitute a systematic procedure
section which treats the classical problem of for generating a MA modal of time series based on
spectral estimating a time series composed of two given autocorrelation values.
sinusoids in additive white noise. It is there
shown that the more general ARMA modeling procedure In most applications, one has available only
easily outperforms its special case MA and AR a set of time series observations (3) (and not
modeling procedures. With the ARMA spectral modeling autocorrelation values) upon which to generate a
methods superior performance thereby demonstrated MA spectral model. If expression (6) is to be used
for this idealistic situation (i.e., actual auto- for this objective, it will then be necessary tocorrelation values are given), we next direct our obtain estimates of the autocorrelation elements
attention to the more practical problem of generat- from the given time series observations. The un-
ing ARMA spectral estimates from a finite set of biased estimator as specified by
observations (3). In particular, the recently
developed high performance ARMA modeling method is 1N-noutlined [2&[) x(n+k) x~k) (<(8outlined [2]&[4]. This novel procedure has x I 0n (8)
been found to outperform such alternate ARMA k-
modeling procedures as the Box-Jenkins method(10O is often used for this purpose in which it is
and whitening filter approaches [ll]&[12]. asaed that the MA model order is such that q<N.

II. MA SPECTRAL MODELING Alternatively, the periodogrom method has served
as a useful procedure for effecting a MA spectral

There exist a variety of procedures for obtain- estimate from a set of contiguous time series obser-
ing a MA model of a wide sense stationary time vations [ 6] . The periodogrem possesses the
series. These include the periodogrm and differ- additional advantage of being efficiently imple-
ent versions of the autocorrelation method. In mented by the fast Fourier transform algorithm.
each case, the spectral estimate will be of the The inherent order of a MA periodogram model is N-1.form
.. Sx(ejw) - b 0 +bleJ + . . . +b.jq 2 (5) II. AR SPECTRAL MODELING

In this section, the method of linear pre-

This MA spectral model requires a rather large diction is used for generating an AR spectral model
value for the order parameter q to enable it to associated with a given time series. In particular,
achieve a desirable frequency resolution perform- the coefficients of the pth order AR spectral model
ance. Unfortunately, this requirement can lead to as specified ky
a rather poor spectral estimation behavior in the bo 2
case of moderate length time series observations. S (ew) 0
This behavior will be illustrated in the niinrical x 11 eJw +. +a pe-j(
example section. 1p

In this section, we will be concerned with will be determined by solving a system of p+l
evolving a MA spectral estimate procedure for the linear equations in the p+l coefficient unknowns
special case in which one has available the q+l ala2± ap . These equatons are obtain-,utocorrelation elements r ( ., r b0 .

.. sefic
'..aut co r el a i on si e mlt r (0 ) , r (1 ) .. . , - r (q ) . ad by on i d e ing the sp ec ific p rob lem o f pro-

dicting the time series element x(n) by a linearwith this information provided, a standard esti- combination of the p most recent time series- mation is generated by the truncated series [5]. elements x(n-),x(n-2), . . ., x(n-p). It will
turn out that the resultant set of optimal equat-S (eJ) q -jwn ions thus obtained will correspond exactly with

x " Z w(n)r(n)e(6) those equations which arise when using the
n--q



"maximm entropy" method of spectral estimation. (e.g., see ref. [7]). Namely, the optimal co-

This equivalency has been previously recognized [7]. efficients of the p+l
a
t order predictor may be

As indicated, the task at hand is that of recursively obtained from the optimal coefficients

estimating the time series element x(n) by means of of the pth order predictor. As indicated previous-

the linear combination ly, the system of equations (15) is identical to
that obtained when using the maximum entropy

P method of spectral estimation.i(n5) - Z a.,x(n-k) (10)
k I (f the optimal predictor is performing its

in which the optimal prediction coefficients ak* objective, it follows that the prediction element
are to be ultimately used in the AR spectral model i(n) will contain all which is predictable in x(n).
(9). The prediction error is formally given by As such, the prediction error (11) is white like

in behavior and its spectral density is then given

e(n) - x(n) - i(n) by Se~si) - E . This behavior is of course de-
pendent on making the order parameter p sufficient-

P ly large so as to achieve the desired perfect
- x(n) + Z akx(n-k) (11) prediction. Assuming this prediction behavior, it

k-I then follows from relationship (11) that the
spectral density function of the time series (x(n))

It is now desired to select the complex valued ak  given by expression (9) in which the coefficient
prediction coefficients so that the expected value bo

2 
- E and the ak coefficients are obtained

of the error's magnitude squared is minimized. One upon solving relationship (13) or equivalently

may straightforwardly show that this mean squared relationship (15).

error ts given by

p In this analysis, it has been assumed that
.2, - .r,, one has available the time series autocorrelation

xr(0) + k (akrx(-k) + ak rx(k) values rx(O), rx(l), ... rx(p). More realistic-
ally, such perfect autocorrelation knowledge is

P p almost never available. In a typical application,

+ aka~rx(m-k) (12) one has available only a sampled set of time series
k-i m-I observations as exemplified by expression (3). If

the AR spectral estimation procedure as represented
Upon using standard calculus methods, it is found by expression (15) is to be incorporated, one could
that the minimizing predictor coefficients must use the given time series observations to obtain
satisfy the following system of p linear equations estmates of the required autocorrelation elements.

P Alternatively, a set of determinitic prediction

a rx(m-k) - -rx(m) for lm~p (13) error equations can be minimized so as to obtain
k-1 the prediction coefficients. In effect, this is

the approach usually taken in evolving the Burg
If this optimal selection is inserted into ex- algorithm [7 ].
pression (12), the minimum mean squared error is
found to be

p IV. ARMA SPECTRAL MODELING

kI The time series (x(n)) is said to be an ARMA
process of order (p,q) if it is generated according

In summary, the optimal predictor coefficients to the linear causal relationship
are obtained upon solving the system of linear
equations (13), and, the corresponding minimn P q

mean squared error is computed by means of relation- x(n) + I akx(n-k) I 0bkw(n-k) (16)

ship (14). From a computational viewpoint, however, k-1 k
a more efficient method for iteratively obtaining where the excitation sequence (w(n)} is a zero mean

the optimal predictor performance is obtained by white noise time series whose individual elements
incorporating relationships (13) and (14) into the have variance one. It is a simple matter to show
single expression that the spectral density function associated with

I- E this response time series (x(n)} is given precisely
-rx(05 rx(-l) .... rx(-P) Epj by expression (4). Thus, there is an equivalency

r (1) rx(0) .... rx(.p.44)I a
1  

0 between a rational spectral density model and the
x.( response of a linear system to a white noise

a; 02 excitation.

Sr p) rx(P-) .... r() i a, Coefficient Determination

" " A procedure for identifying an ARMA model's

in which - K(W (n)1
2
}. One may solve this Toeplits &k autoregresive coefficients involves examining

system of equations using the Levinson algorithm its second order statistical characterization.

in a computationally efficient order update manner This is achieved by first multiplying both sides of



expression (16) by x*(n-u) and then taking expect- whose validity is established by making use of the

ed values. The results of this operation are the complex conjugate symmetry property of auto-

well. known Yule-Walker equations correlation sequences (i.e., r(-n) - r*(n)). The

p Fourier transform of expression (21) is found to

r1(M) + k1a krx(m-k) " 0 for m > q (17) be .ew)-s+(eJa + s+cj (22)
whore it is important to note that the lag variable X I1

m is here restricted to be larger than the ARMA in which S,(*
jw) denotes the Fourier transform of

model's numerator order q.
1  the autocorrelations' causal image (20). In what

is to follow, a systematic procedure for identify-

In effect, the above Yule-Walker equations ing S+(eJw) will be given which, with the utilizat-

indicate that an AlmA time series' autocorrelation .on o expression (22),results in the overall time

elements are interrelated in a wall defined linear series' spectral density.

manner for appropriate lag values. This obser-
vation than provides the vehicle for determining T int i fcatin isxperhap se ce

the ARM )del's associated ak  coefficients. To by introducing the following auxiliary sequence
be more stecific, let us now express the first t +

Yule-Walker equations (17) in the following matrix c(n) - r(n) + I akrx (n-k) (23)
format k.1

xCq) rx(q-l). ... r. r(q+-p) all r(q+l) j in which the ak coefficients as generated from

expression (19) are used. Due to the nature of the

rr q+l) r (q) . . . . r(q+2-p) a r(q+2) causal image sequence and the underlying Yule-
rx x x2 21 Walker equations (17), it is readily shown that

this auxiliary sequence is identically zero outside

Iap the indexing range 0 < n < max(p,q). Using this

jpj fact, the Fourier transform of relationship (23)

(q+t-l) r(q+t-2). . .rx(q+t-p) r (q+t) is found to yield

(18) C (e) I c(n)e- wn , - max(p,q) (24)
n-O

or in the more compact representation - A (G )S ( w )  (25)

R a -r (19) Using this result in equation (22), the required

where R is a txp matrix and a and r are pxl and ARMA spectral density formulation is obtained

txl vectors, respectively. A j(ejw)C*(.Jw) +A*(ej C (ejw)
S (ejw ) ., (26)

It is readily shown that this system of equations Sx ApejW)A jW)(
will have a unique solution provided that t > p p p

To obtain the ARMA model's ak coefficients, one To obtain the AlMA model's bk coefficients,
then simply solves this system of linear equations. we next incorporate relationships (4) and (26) to
From a computational viewpoint, it is convenient generate the comlex conjugate symetrical poly-
to set t equal to its minimum value of p. For nomial (in the sJw) expression
reasons which will be spelled out in Section VI,
however, it will often be advantageous to let B (eJe )B((aW) Ap(SJi)C (eiW) +AC(siW)C (aiW)
t take on values exceeding p. q q p p

b, Coefficient Determination 
(27)

A spectral factorazation of the right side poly-

To determine the ARMA model's bk coeffici- nomial will yield 
2q roots which occur in complex

eants, it will be expedient to introduce the auto- conjugate reciprocal sets. One then need only

correlation sequence's causal image select an appropriate q of these roots to deter-

r 1 mine the required Bq(eJw) term (e.g., the minimum

r (n) - rx (n)u(n)- rx(O)8(n) (20) phase selection).
To summarize, the spectral density function

where u(n) and 8(n) denote the standard unit- MW the model coefficients corresponding to an
step and Kronecker delta sequences, respectively. ARM time series of order (p,q) may be obtained by
The autocorrelation sequence may be recovered from following the systematic procedure outlined in
its causal image through the relationship Table 1. To carry out this process, it is

r (n) - r (n) + r +(-n)* (21) necessary to have knowledge of the order pair
-_ _ (p,q) and the autocorrelation elements r,(n) for
1The Yule-Walker equations associated with lag 0 < n < q+p.

values Onm<q will involve the AlMA model's bk
coefficients in a nonlinear manner.

4



1. Solve Relationship (19) for the p auto- choices for the time series parameters were taken
regressive ak coefficients. This will re- to be al - /2, wl - 0.4, 42 - 2, w2 - 0.4269 and
quire setting t > p. (1

2 
- 1. This selection provides individual sinu-

sold signal-to-noise ratios of lOdB (decibels) and
2. Generate the auxiliary sequence c(n) and its OdB. Due to the relative closeness of the sinu-

Fourier transform using expressions (23) and sold frequencies, this example provides an excel-
(24), respectively, lent measure of the frequency resolution capabili-

ties of the three modeling procedures. A brief
3. The required spectral density is given by description of the results obtained for this

relationship (26). example now follows.

4. Perform a spectral factorization of the MA Spectral Estimates
polynomial E(eJw)B*(eJ) as given by ex-
pression (27) to obtain the required bk The autocorrelation elements as specified by
coefficients. expression (29) where incorporated into the MA

spectral model relationship (6) in which the
window function is taken to be rectangular (i.e.,

Table 1: Generation of the spectral density and w(n) - I for 0 < n < q). The spectral estimates
the ARMA model parameters associated with a thereby achieved for the specific order selections
given set of autocorrelation values. q - 15, 30, and 200 are displayed in Figure 1.

From these plots it is clear that the MA modeling
V. EXAMPLE procedure is unable to resolve the sinusoids for

the order selections q - 15 and 30. When q is set
To demonstrate the relative effectiveness of to 200, it is possible to just barely detect the

the MA, AR, and ARMA modeling schemes presented in presence of the lower amplitude sinusoid. It is
the last three sections, let us consider the class- apparent from this example that classical Fourier
ical problem of generating spectral estimates of approaches provide relatively poor vehicles for
a time series composed of two sinusoids in additive achieving frequency resolution even when exact
white noise. Namely, the time series will be autocorrelation elements are used.
governed by the relationship

x(n) - asin(W 1 l1 ) +a 2sin(w 2n+e 2) +w(n) (28) AR Spectral Estimates

The autocorrelation elements (29) were next
in which e1 and 92 are independent random variables incorporated into the optimum one-step predictor
uniformly distributed on [O,2H] and w(n) is a zero (or maximm entropy) expression (15), with AR
mean white nois! process whose individual elements order choices of p - 15 and 30. The two AR spect-
have variance a . The sinusoidal amplitudes a1 and ral estimates which resulted are shown in Figure
a2 , and, normalized frequencies wl and w2 will be 2 where it is apparent that a frequency resolution
here taken to be unknown constants. 2 is achieved for p - 30, but, not for p - 15. In

contrast to the classical Fourier approach, the
It is readily shown that the autocorrelation AR spectral modeling procedure is capable of

sequence corresponding to this time series is achieving the required frequency resolution with
given by a reasonably small order model.

a 2  2
rx(n) - I cos(wln) +a2 cos(W 2n) +a26(n) (29) ARMA Spectral Estimate

Upon taking the Fourier transform of this auto- In the final modeling approach, the auto-
correlation sequence, the associated spectral den- correlation elements (29) were next used to obtain
sity function is found to be an ARMA model of order (4,4) using the procedure

a(e ) 2 as outlined in Table 1. The resultant spectral

2 1 estimate is plotted in Figure 3 and is seen to
a 2 

2 correspond precisely with that as given in
+ '2 -W2 )+6(w 2 )] +02 equation (30).3 This should not be surprising

2 considering the fact that the given autocorrelation

for -1 - W_ (30) sequence (29) is an ARMA time series of order (4,4).
Thus, the model used in this case precisely matches

This spectral density function is seen to be corn- the time series being examined.

posed of dirac delta functions located at fre-
quencies t w & ± w2 riding on top of a constant VI. HIGH PERFORMANCE METHOD OF
value '2 due to the additive white noise. ARMA SPECTRAL MODELINC

Using the given autocorrelation elements (29) It is possible to adapt many of the ideas of
as entries, the three spectral estimation pro- Section IV to achieve an AlMA spectral estimate
cedures just described were next utilized to when only the time series observation (3) are
generate MA. AR, and ANMA models. The specific

2 3
If infinite precision computatiotuwere utilized.

The normalized frequency variables are taken to there would be an exact pole-zero cancellation and
lie in the interval (0,H). an associated constant spectral density function.

I ' I . .. I . .I - " - -- ,



available (and not autocorrelation values). We ARMA model order choice. In any case, the system
shall again treat separately the cases of auto- of equations with these estimate substitutions
correlation and moving average coefficient deter- will give rise to the tx1 Yule-Walker approximation
mination, error vector as specified by

Autoregressive Coefficient Estimation a - YtX a + Ytx (36)

To implement the autoregressive coefficient Upon taking the expected value of a, it is found
selection process as represented by relationship that for the ARMA modeling order choice in which
(19). it will be necessary to compute appropriate q I p, that this expectation results in
autocorrelation estimates from the given set of p
time series' observations. The high performance E{e(k)}-(N-q-k) x(q+k) + Ea rx(q+k-m) , < <t
ARMA method effects these estimates in the guise - (37)
of a convenient matrix format which lends itself
to a Particularly efficient computational realiza- while for the modeling order case q <p this ex-
tion r2J&[4]. In particular, the autocorrelation pectation produces
matrix and vector required in expression (19) are
estimated according to

R -Yt'X (31) ~(N-) Fr(;~ ) +Zar((km] -x M-1 --
- Y. (32) P(k) p

(N-q-k) r x(q~k) + Ia r x(q+k-m ,p-q< k < t

where the dagger symbol denotes the operation of +-arqk1 (38)
complex conjugate transposition. The (N-p)xp
Toeplitz type matrix X is specified by in either ordering case, it is seen that when the

xtp) x(p-1).., x(l) time series is an ARMA process of order (p,q), the
pexpected value of the error vector e can be made

x(p+0 x(p) x(2) equal to zero by a proper choice of the auto-
X = regressive coefficient vector a. Namely, this

selection would be such that the underlying Yule-
Walker equations (17) are satisfied. 5 This implies

,x(N-1) x(,-2) x(N-p)i that the system of equations (36) with e - 8 pro-
J vides an unbiased and a consistent estimate of the

while the (N-p)xt Toeplitz type matrix Y has the Yule-Walker equations.
form

x(p-q) x(p-q-1) . . .x(p-q-t+l)" With the above thoughts in mind, an appealing

x(p-q+l) x(p-q) .... x(p-q-t+2)I approach to selecting the autoregressivs co-
efficient vector is immediately suggested. Namely,

* (34) a is chosen so as to make the error vector "as
y -close" to its expected value of 8 as possible.

x(N-q-l) x(N-q-2) . . .x(N-q-t) This is of course predicated on the assumption
f(- - that the time series is an ARMA process of order

(pq) or less. In order to attain a tractable
and x is a (N-p)"1 vector given by

4  
procedure for selecting an appropriate auto-
regressive coefficient vector, we shall introduce

Y [x(p+l), x(p+2), ... x()]' (35) the following quadratic functional
In formulating matrix Y, we have used the con- f(a) - 1tA a (39)

vention of setting to zero any elements x(k) for
which k lies outside the observation index range in which A is a txt positive-definite diagonal
I < k N . matrix with diagonal elements Akk that is

introduced in order to provide one with the option
If the autocorrelation matrix and vector of weighting differently the various error vector

estimates (31) and (32), respectively, are substi- components. It is a simple matter to show that an
tuted into the Yule-Walker relationship (19), autoregressive coefficient vector which will
however, it is generally found that the resultant render this quadratic functional a minimum must
system of t equations in the p autoregressive satisfy
coefficients is inconsistent for t , p. This is X AY X i* * . X~y AY~x (40)
due to inevitable inaccuracies in the auto-

correlation estimates, and, to a possible improper

A more generalized version of this estimation 
5
A little though will convince oneself that this

scheme can be obtained by substituting the inte- same conclusion will be reached if both q and p
ger k for p wherever p appears in relationships are at least equal to the numerator and denoml-
(33) - (35). For ease of presentation, k is nator orders, respectively, of the underlying
here restricted to be p. AM time series.

6



One then simply solves this consistent system of 'k(a) - E(a+P+1+kd) 0-nq (43)
p linear equations in the p unknown autoregressive
coefficients to obtain an estimate for the denomi- 0<k <L-1

nator dynamics of the ARMA model, where "d" is a positive integer which specifies the
time shift between adjacent segments. These indi-

Moving - Averae Coefficient Estimation vidual segments will overlap if d <q and will per-
fectly partition the residual sequence when d -q +1.

There exist several procedures for estimating In order to include only computed elements, the
the ARMA model's moving average coefficients. We relevant parmters must be selected so that
shall now briefly describe two procedures which q +p +1 + (L-l)d <N. Next the periodogram for each
have provided satisfactory performance and in a of these L segments is taken and then everaged to
sense complement one another. obtain the desired qth order smoothed periodograu,

that is
(1) ck Method §L(J1) J1 q n(n)e(ne j n 2

The procedure which has provided the best L k0r ny- n 0 kn I
frequency resolution behavior is a direct
adaption of the ck method as described in where w(n) is a window sequence that is normally
Section IV (and ref. [3]). In particular, selected to be rectangular (i.e., w(n)-1/i1~i for
using the set of autoregressive coefficient 0<n<q). It is readily shown that thi
estimates as obtained from expression (40) renults i sired on at th ore ureand a suitable set of autocorrelation results in a desired nonnegative qth order MA
e s itbe st fof au a on e spectral density estimate. Unfortunately, its
estimates te(n) for nf0,iit. m ex(q,p) one frequency resolution capability is generally not
computes the s(n) coefficients using en res- of the same quality as that of the ck method.7
sion (23). These coefficients are then used On the other hand, the smoothed periodogram method
towheve theordesed n latsipl eiate provides more smoothly behaved spectral estimates
when incorporated into relationship (24) nd which contain fewer spurious effects.
ultimtely relationship (26). Although pro-

viding an excellent frequency resolution To sumrize. the required ARMA spectral model
behavior, this procedure suffers the drawback is obtained by following the systematic procedure

of not having a garanteed u ative dei- outlined in Table 2. The numerator dynamic esti-
ite spectral density function.6 Itis with mation procedure to be used will of course depend
this in mind that the following well known on the particular characteristic being sought (e.g.,
smoothed periodogram method was adapted [13]. frequency resolution, smoothness, etc.)

(ii) Smoothed Periodogram Method

i. Specify values for the ARNA model's order
In the smoothed periodogram approach, parameter pair (q,p), the Yule-Walker

one first computes the so-called "residual" equation parameter t, and, the weighting
time-series elements according to the relation- matrice'sdiagonal elements Xkk.
ship (see ref. (3]).

p 2. Using the time series observations x(l),

C(n) -x(n) + I k'x(n-k) for p< n< N (41) x(2)....,x(N), construct the matrices 1, Y,
k-l and vector x according to relationships (33),

in which the ai
° 
autoregressive coefficients (34), and (5), respectively.

as obtaIned by solving expression (40) are 3. Determining the model's autoregressive co-
incorporated. From this relationship the officients by solving relationship (40).
spectral density expression directly follows

S (a
j )  

4. The numerator's dynamics are obtained by
S (ej") - C (42) using either the (i) ck method, or,K 11 ;eijw)1 2  

(ii) the smoothed periodogram method.

If Sx( ) is to correspond to an ARMN spect- Table 2: Basic steps of the standard high per-
ral modal of order (p,q), it is clear that a formence AWA spectral estimation method:
qth order MA spectral estimate for the rel- The Block processn Mods.
dual spectral density S,(eJw) ust be obtained
and then substituted into relationship (42). The improved spectral estimation performance
The smoothed periodogram has been found to be obtained in using this high performance method
a useful tool for this purpose. over contemporary ARNA techniques such as the Box-

In the smoothed periodogram method, one first Jenkins method is, to a large extent, a conse-
partitions the computed residual elments (41) int quence of selecting the integer t to be larger
partiegment eacofputed leng l a ecieds by1) i then the minimal value p. With the corresponding
L segments esch of length q+l as specified by larger set of Yule-Walker equations that are

6
This shortcoming my be superficially avoided by 7A similar approach shares the same attributes as

taking the absolute value of the spectral estimate. does the smoothed periodogram (14].
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thereby being approximated, it intuitively follows 5. R. B. Blackman and J. W. Tukey, "The measure-
that the model's autoregressive coefficients will ment of power spectra from the point of view
be less sensitive to autocorrelation estimate of comunication engineering", New York:
errors which are embodied in YtX and Ytx than would Dover, 1958.
be the case if t were set to p (as in the Box- 6. A. V. Oppenheim and R. W. Schafer, DIGITAL
Jenkins method). This anticipated improvement in SIGNAL PROCESSING, Englewood Cliffs, New
spectral estimation behavior when using the high Jersey, Prentice-Hall, Inc. 1975.
performance method has in fact been realized on a 7. S. Haykin, NONLINEAR METHODS OF SPECTRAL
rather large number of numerical examples [1]-(4]. ANALYSIS, New York, Springer-Verlag, 1979.
It is shown in reference [41 & 18] that this high 8. K. Ogino,"Computationally fast algorithms for
performance method also lends itself to a particu- ARMA spectral estimation", Ph.D. dissertation,
lar fast adaptive implementation mode when t - p. Virginia Polytechnic Institute and State
With the two attributes of improved spectral University, June , 1981.
estimation performance and computational efficiency, 9. Y. Pao and D. T. Lee, "Additional results on the
this new procedure promises to be an important Cadzow ARMA method for spectrum estimation",
spectral estimation tool. Proceedings IEEE International Conference on

Acoustic, Speechand Signal Processing, vol. 2,
It is of interest to note that when q - 0 and March 31, 1981, pp. 480-483.

t - p. the high performance ARKA spectral esti- 10. G. Box and G. Jenkins, TIM SERIES ANALYSIS:
mation method reduces to the well known AR co- FORECASTING AND CONTROL (revised edition) San
variance method. Moreover, upon letting t exceed Francisco: Holden-Day, 1976.
p, the resultant set of expanded AR Yule-Walker 11. P. R. Gutowski, E. A. Robinson and S. Treitel,
equation approximations will typically result in "Spectral estimation, fact or fiction",
better spectral estimates than the standard AR co- IEEE Transactions on Geoscience Electronics.
variance method. To the author knowledge, this ap- vol. GE-76, April, 1978, pp. 80-84.
proach has not been used in the various AR spectral 12. S. A. Tretter and K. Steiglitz, "power spectrum
estimation procedures developed to date. identification in terms of rational models".

IEEE Transactions on Automatic Control, vol.
VII. CONCLUSION AC-12, April 1967, pp. 185-188.

13. P. D. Welch, "The use of fast Fourier trans-
A computationally efficient closed form form for the estimation of power spectra",

method of ARMA spectral estimation has been pre- IEEE Transactions on Audio Electroacoustics,
sented. It is predicated on the approximation of vol. AU-15, June 1970, pp. 7-73.
a set of Yule-Walker equation estimates which are 14. S. Kay, "A new ARMA spectral estimator", IEEE
generated from a given set of time series obser- Transactions on Acoustics, Speech, and Signal
vations. The ARMA model's autoregressive Processing, vol. ASSP-28, No.5, October, 1980,
coefficients are determined by solving a consistent: pp. 585-588.
system of linear equations.

The spectral estimation performance of this
ARMA modeling procedure has been empirically found
to exceed that of such counterparts as the maximum
entropy and Box-Jenkins methods (e.g., see refs.
[1]-[41 & 191). This behavior is, to a large
extent, a consequence of the fact that more than
the minimal number of Yule-Walker equation esti-
mates are being approximated to obtain the result-
ant ARMA model parameters.
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